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A Study of Second-Order Thermal Diffuse X-ray Scattering Effects and the Elastic 
Properties of Cubic Single Crystals 
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The elastic constants of certain single crystals may be obtained by the measurement of thermal diffuse 
X-ray scattering variation in regions close to reciprocal-lattice points. A method has been given which 
allows for second-order contributions to the total diffuse intensity by use of a least-squares procedure. 
The refinement was simplified by equating two functions, each depending on the elastic properties of 
the crystal, the nearby lattice point to the positions of observation and the direction along which the 
intensity variation is measured. For cubic crystals, there is an exact equality between appropriate 
powers of these functions for several important crystallographic directions, while for other directions 
some approximation results. The present paper includes a simple method of allowing for the deviation 
from equality in the latter cases• 

Introduction 

Measurement  of thermal diffuse scattering variation in 
certain directions close to reciprocal lattice points of 
strong to medium scattering power has been shown to 
provide values for the elastic constants of crystals which 
are in reasonable agreement with values obtained by 
other methods for several cubic and a few other lower 

symmetry single crystals of an atomic rather than mol- 
ecular nature (Wooster, 1962). 

The relationship between the contr ibution to the 
observed thermal diffuse intensity due to a single inter- 
action of a phonon with the incident X-ray photon 
(i.e. a first-order scattering process) and the theoreti- 
cally calculated contribution, which is associated with 
the appropriate elastic constants of the crystal, is a 
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relatively direct one. Unfortunately, second and higher 
order interactions contribute to the overall observed 
diffuse intensity distribution. Recently, a method has 
been proposed by which the contribution for second- 
order thermal diffuse scattering may be allowed for in 
the determination of the elastic constants of crystals 
using a least-squares refinement technique (Lucas, 
1968). The method consists of refining a quantity 
(which involves the unknown elastic constants, details 
of the reciprocal lattice point under investigation and 
the direction along which the intensity variation is be- 
ing measured) in the theoretical expression for first- 
and second-order photon-phonon interactions to the 
observed thermal diffuse scattering intensity. Calcula- 
tion of the contribution due to second-order interac- 
tion requires, in general, a summation over the overlap 
volume of two Brillouin zones, the origins of which 
are each displaced with respect to one another by dif- 
fering amounts, for each point of intensity observa- 
tion. The resulting volume is usually of a far from 
analytic form and almost certainly requires a numerical 
integration for its evaluation. However, it has been 
suggested that for some directions of measurement, 
certain functions which play an important part in the 
determination of the second-order contribution can 
be simplified without approximation, while in others, 
some approximation is made (Prasad & Wooster, 
1956). This was made use of in the method previously 
reported (Lucas, 1968). The present paper includes a 

method for simplification, without such an approxima- 
tion, in the more commonly used crystallographic di- 
rections and for general reflexions. 

The relationship between observed and theoretically 
calculated thermal diffuse scattering intensity. 

The observed intensity of diffuse scattering, l~(obs), 
close to a reciprocal lattice point, after background 
scattering has been deducted and higher than second- 
order effects neglected, may be approximated (Lucas, 
1968) to 

Ia(obs)=G K[ABC]~ez . - ~  + HK'[ABC]nez . R (1) 

where 

and 
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l~(obs) is the total diffuse intensity observed, less back- 
ground, 

I0 is the intensity per unit area of cross-section of 
the direct beam, 

e is the electronic charge, 
m is the mass of the electron, 
c is the velocity of light, 

crystallographic directions and specia#type reflexions 
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is the Boltzmann constant, 
is the absolute temperature, 
is the volume of the unit cell, 
is the structure amplitude at temperature 7", 
is the distance of the lattice point from the 
origin in reciprocal lattice space, 
is the distance in reciprocal space from the 
point of observation to the nearest lattice point, 
is the solid angle subtended by the detector 
aperture at the crystal, 
is the polarization factor, 
is the linear absorption coefficient of the crys- 
tal, 
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O is the crystal density. 
~, (c~ = 1, 2, 3) are the amplitudes of the three acoustical 

waves having wave vector R and 
V, (c~ = 1, 2, 3) are their corresponding velocities. 

For some directions K'[ABC]hkz=(K[ABC]hkZ) 2 ex- 
actly, while for others this is subject to a certain devia- 
tion. In general the relationship may be expressed as 
follows: 
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Fig. 1. d values as a function of sz/su. 
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Equation (1) may then be written: 

( 1 1 1 Ia(obs) = G  K[ABC]h~t . -~ +H'(K[ABC]n~z) 2 . R 

where 
H 
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I + A  " 

The least-squares method now requires that: 
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should be a minimum. 

General expressions for A along the major 
crystallographic directions for cubic crystals 

Expressions for K[ABC]hkz and K'[ABC]hkz in terms 

of P, Q, R =/hZ+k25/12 are given by Rama- 

chandran & Wooster (1951) for the major crystallo- 
graphic directions. Substitution into equation (2) gives 
the following values for A: 

where 
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$5 = 1/(Cll +2C12 + 4C44) $6=  1 / ( C l l -  C12 +C44 ) . 

For certain special-type reflexions, these formulae have 
simplified forms and are given in Table 1. 
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These are represented in graphical form in Figs. 1 and 2 
(over the s-ratio ranges: 0 ~ 1). 

Discussion 

The present work derives expressions, for cubic crys- 
tals, of the relationship between K'[ABC]hez and 
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K[ABC]h~z for any reciprocal lattice point and for the 
major crystallographic directions. It is shown that in- 
corporation of the results into the refinement equa- 
tion may be achieved by a simple modification. The 
expressions for d are shown to be of a form common 
to many directions and lattice points. The variation 
of the A-values has been given numerically and may 
be read from one of the graphs included by calculation 
of the appropriate s-ratios from approximate elastic 
constants. This value is then used to correct the con- 
stant, H, in equation (2), the refinement procedure con- 
tinuing in the previously described manner. An alter- 
native is to include the set of equations (3) in the 

refinement program, select and calculate the appro- 
priate A value by specifying [ABC], (hkl) and approx- 
imate elastic constant values with the input data. The 
value for A could then be updated for each cycle with 
the new values of the elastic constants. 
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